
Measuring Software Complexity to Target Risky Modules in Autonomous Vehicle Systems 1

Measuring Software Complexity to Target Risky Modules in
Autonomous Vehicle Systems

M. N. Clark, Bryan Salesky, Chris Urmson

Carnegie Mellon University

Dale Brenneman

McCabe Software Inc.

Corresponding Author:

M.N.Clark (clarkmn@cmu.edu)

Tartan Racing developed 300 KLOC that represented over 14,000 modules and enabled our

robot car “Boss” to win the DARPA Urban Challenge. This paper describes how any complex

software system can be analyzed in terms of its reliability, its degree of maintainability, and

ease of integration using applied flow-graph theory. We discuss several code coverage

measurements and why this is important in certifying critical software systems used in

autonomous vehicles. Our paper applies cyclomatic complexity analysis to the winning

DARPA Urban Challenge vehicle‟s software. We show graphical primitives followed by views

of modules using those constructs. In this way minimum testing paths are quickly computed and

viewed. We argue for customizing evaluation thresholds to further filter the modules to a small

subset of those most at risk. This “choosing our battles” approach works well when teams are

immersed in a fast-paced development program.

Submitted to

AUVSI North America Conference

San Diego, California

June 11, 2008

Track

Cross-Platform Autonomy

This work would not have been possible without the dedicated efforts of the Tartan Racing team and

the generous support of our sponsors including General Motors, Caterpillar, Continental, and McCabe

This work was further supported by DARPA under contract HR0011-06-C-0142.

mailto:clarkmn@cmu.edu

Measuring Software Complexity to Target Risky Modules in Autonomous Vehicle Systems 2

Introduction

Tartan Racing [1] developed 300 KLOC that represented over 14,000 modules that enabled their

robot car “Boss” to win the DARPA Urban Challenge [2]. Over twenty software developers

spent 14 months implementing code in six areas: Behavior, Mission Planning, Motion Planning,

Infrastructure, Perception, and the vehicle itself. They used a Debian variant of Linux (Ubuntu

LTS) and built 35 binaries with SCONS [3] instead of make. The code was installed on 10 Intel

core2duo blade servers that resided in the hatch area of a 2007 custom Chevy Tahoe.

The inter process communication was a distributed message passing system, supporting TCP/IP,

UDP, and UNIX Domain Sockets as transport mechanisms. Processes communicated with one

another locally on a machine via UNIX Domain Sockets, and remotely via TCP/IP. All

messaging went through an agent that was located on each machine. Processes connected to the

agent local to their machine, and all the agents connected to one another between machines in a

full-mesh configuration. The system was formally tested for 65 days whereby two autonomous

vehicles logged over 3,000 autonomous kilometers (1,864 miles) [4].

Such a system as described above is not uncommon for autonomous vehicles. While in

development, these systems require testing for correctness, reliability, and maintainability.

As these systems mature, performing software maintenance and modifications often overwhelm

schedules and budgets. Fortunately, a series of metrics and related threshold values offers

indications for when we should be concerned. At the very least testing should demonstrate:

 The program fulfills specification – Verification

 The program performs the required task – Validation

 Modifications to existing good code do not produce errors – Regression testing

However, this does not state which tests should be done or when the tests should be stopped.

Furthermore, testing for quality attributes like maintainability and reliability are difficult enough

when dealing with physical systems; when applied to autonomous vehicle software, the difficulty

increases. However, quality features can be measured or deduced by inspecting the source code,

assessing its features and looking for defects. This inspection technique is called static analysis.

These can be manual or automated methods. A second method called dynamic analysis, tests for

defects and code coverage by actually running instrumented software. The effort in both is to

produce quantitative numbers about the software so resource decisions can be made.

The testing community generally agrees that the following items contribute to the quality of code

[5]:

 Overall program structure

 Program design techniques

 Code readability

 Code Complexity

 Input/Output dependencies within programs

 Data usage within programs

Measuring Software Complexity to Target Risky Modules in Autonomous Vehicle Systems 3

This paper focuses on automated software complexity testing as it relates to an autonomous

vehicle application: specifically Tartan Racing‟s vehicle Boss.

Code Size, Content, and Complexity

Measuring software attributes falls into two camps:

 Code size and content

 Code complexity

Code size is one of the easiest things to measure, giving rise to „line count‟ software metrics:

 Lines of code

 Lines of comments

 Lines of mixed code and comments

 Lines left blank

Line counts do not tell us:

 How difficult it is to understand the code

 The mental effort needed to code a program

 The algorithmic complexity of code units.

One premise of using software complexity to measure software complexity is that bug-laden

code is usually complex. Furthermore, complex components are also hard to understand, hard to

test, and hard to modify. If we reduce the program complexity, the programs will improve. In

fact, practical experience [6] has shown this to be true.

Halstead‟s theory of software metrics [7] has its roots in evaluating complexity of low level

programs like assembly language. He proposed a short set of measurable operator and operand

quantities and then used them in equations to predict program features.

McCabe‟s model for software

metrics [8] determines the

complexity of a program unit or

module by measuring the amount of

decision logic. The McCabe number

is a predictive measure of

reliability. In itself, the complexity

value v(G) does not identify

problems or errors but there is

strong correlation between v(G) and

code errors in case studies [6].

Both Halstead and McCabe models are

applied to real projects and are supported by commercial tools [9] [10]. This paper describes

using the cyclomatic complexity metric v(G), i.e. McCabe number.

Fig. 1- Bug-laden code is usually complex

Measuring Software Complexity to Target Risky Modules in Autonomous Vehicle Systems 4

Flow Graph Theory

 The cyclomatic complexity metrics are described below. For any given computer program, its

control flow graph, G, can be drawn. Each node of G corresponds to a block of sequential code

and each arc corresponds to a branch of decision in the program. The cyclomatic complexity [9]

of such a graph can be computed by a simple formula from graph theory, as:

 V(G) = E − N + 2P

where

v(G) = cyclomatic complexity

E = the number of edges of the graph

N = the number of nodes of the graph

P = the number of connected components.

Cyclomatic complexity is alternatively defined to be one larger than the number of decision

points (if/case-statements, while-statements, etc) in a module (function, procedure, chart node,

etc.), or more generally a system.

Complexity and Software Quality Attributes

Quality Attributes are often called the non functional system requirements. They guide the

system architecture, design and implementation. Understanding the quality attributes provides

focus for the business drivers. Flow graph techniques make quantifying non functional properties

like reliability, maintainability, and ease of integration possible. Not only can the techniques be

automated, the results are non subjective and thereby helpful when making software resource

decisions.

Reliability- Cyclomatic complexity v(G) is a size indicator in that it measures the number of

logical paths in a module. It is also the minimum number of tests needed to forecast high

reliability. Cyclomatic complexity is often referred to as the McCabe number. Modules with

numbers below a threshold of 10 are considered reliable.

Maintainability- The Maintenance number ev(G) or “Essential” complexity measures the degree

to which a module contains unstructured constructs. It is the reduction of cyclomatic such that

only unstructured code remains in the flow graph. Studies show that code is harder to maintain

when the ev(G) is above 4.

Integration- The Integration number iv(G) measures the decision structure which controls the

invocation of a module‟s immediate subordinate modules. It is a quantification of the testing

Measuring Software Complexity to Target Risky Modules in Autonomous Vehicle Systems 5

effort of a module as it calls its subordinates. Modules with numbers above 7 are considered to

require a significant amount of integration testing effort.

 Figure 2 shows familiar software constructs as graphs. Each has nodes and edges.

Fig. 2 - Flow Graph Primitives

Maintaining code is difficult when there is

a high degree of branching into and out of

structures as seen in Figure 3.

Fig. 3 - Unstructured Logic (hard to debug)

If .. then If .. then .. else If .. and .. then If .. or .. then

Do .. While While .. Do Switch

Measuring Software Complexity to Target Risky Modules in Autonomous Vehicle Systems 6

Minimum Path Coverage

Time limits us from testing all statistical paths in even the simplest of software structures. The

module shown in Figure 4 has one switch, an „if‟, and a loop statement. If one execution took

one nanosecond, then testing all statistical paths would take 31 years. Instead, we test the number

of unique closed loops in the module plus one. For example, in Figure 5 the software structure is

a composite of the primitives described in Figure 2. There exist 9 closed conditions that result in

10 paths to be tested. This will cover all the code and decision logic.

Fig. 4 - Test all statistical paths in a simple structure

Fig. 5 - Minimum Test Paths

Measuring Software Complexity to Target Risky Modules in Autonomous Vehicle Systems 7

Selecting the Metric Threshold Values

Tartan Racing developed, implemented, and qualified their autonomous vehicle software in 14

months [12]. Over 20 software engineers contributed code. Complexity analysis started 10

months into the program. A static complexity analyzer [9] looked at six sections for code

reliability and maintainability. Together the sections contained over 15,000 modules. In the top

chart of Figure 6 shows the lines of code (LOC) while in the bottom chart the cyclomatic

complexity and essential complexity (maintenance) are shown. The tool‟s computation time for

each section was approximately ten minutes running on a 1.2 GHz processor. The threshold

value for complexity is 10 and for maintainability it is 4. Tartan Racing‟s average numbers were

well within the threshold values except for a few modules that were an order of magnitude over.

These were identified to the software leadership in both list and scatter graphs forms. Figure 7

shows scatter graphs for three of the six software sections.

Fig. 6 - LOC, complexity, and maintainability measurements

Measuring Software Complexity to Target Risky Modules in Autonomous Vehicle Systems 8

The modules of interest for Tartan Racing were in the scatter graph‟s upper right quadrant

because these modules were both unreliable and not easy to maintain. The lower right quadrant

was the least populated. The number that exceeded the threshold of 10 for complexity and 4 for

maintenance were too many for the software team to review given their tight delivery schedule.

Therefore, the analyst changed the complexity threshold from 10 to 22. This decreased the

number of unreliable modules needed for peer reviews. The analyst raised the threshold based on

the development team‟s software maturity level. He reasoned that in the ADA language, twenty-

two can be an acceptable complexity threshold because of team discipline. That and a need to

“pick our battles” were the reasons the analyst raised the complexity threshold.

Maintaining the code was secondary to having reliable code. While the developers knew

intuitively which modules were hard to de-bug, a quantitative metric helped the software leader

plan when modules would be ready. For similar reasons given for complexity, the analyst raised

the code‟s maintenance threshold from 4 to 10.

Code Coverage Levels

Code coverage is a measure of what software ran during testing. When code coverage tools using

source-code based techniques are used, it inherently means the code was instrumented, and

coverage results are gleaned from log data. Code coverage analysis is especially useful for

troublesome modules and program sections. Moreover, mission critical software should be

validated according to a determined level of code verification. Figure 8 shows several increasing

code coverage levels, with two alternatives for very thorough techniques for mission critical

verifications.

The first code coverage level, “Module” is simply knowing the module was entered and keeping

a count. The second level, “Line”, counts whether any part of a line was performed. An example

Fig. 7 - Example of Scatter Graphs

Measuring Software Complexity to Target Risky Modules in Autonomous Vehicle Systems 9

is that the following line is counted as executed whether the decision's true outcome or false

outcome is executed. Branching is not counted at this level.

 if A = B do C else do E

For mission critical software like sections of autonomous vehicle code, one looks to at least the

“Branch” coverage level. For the statement above, the true outcome of the decision would be

counted as one branch, and the false outcome as a second branch, and the execution of each

would be counted separately.

If more thoroughness is desired, then one of two alternatives might be taken, depending on the

mission requirement. One alternative is Boolean or Modified Condition/Decision Coverage

(MCDC) coverage. In the example of the following code,

 if A or B or C do E

MCDC coverage requires that all three conditions of this decision be checked separately. For

airborne software to be certified, it must comply with the FAA's D0-178B code structure

coverage criterion. While DO-178B does not explicitly accept cyclomatic complexity data,

depending upon the level of criticality (C, B or A) increasing code coverage is required. Level C

requires that a test case (and requirement) trace to every code statement. Level B to every code

branch (specified path), and Level A to every MCDC. DO-178C (due in 6-8 months) will allow

some credit for modeling under some conditions.

Cyclomatic complexity coverage (or basis path coverage) as defined in the Structured Testing

methodology [6] is a valid alternative for thorough code coverage. This methodology indicates

that the minimum number of tests required for high reliability is equal to the Cyclomatic

complexity; the number of linearly independent paths through a graph of a software unit.

 Fig. 8- Code Coverage Levels

Measuring Software Complexity to Target Risky Modules in Autonomous Vehicle Systems 10

Future Work

Tartan Racing‟s schedule and late exposure to complexity analysis did not allow for

implementing code coverage. A proof of concept showed that the code could be easily

instrumented and results achieved quickly, Figure 9. When the “BehaviorTask” binary was

executed for one minute, 82 of 928 modules had some coverage. The tool [9] can provide all of

the discussed levels of code coverage. Future work remains to evaluate the effects of

instrumented code on the application‟s performance.

Summary

We established that there are metrics and related threshold values for software quality attributes

like reliability, maintainability, and ease of integration. There are tools that quickly compute

these values without running the application. Scatter graphs help us visualize the modules

belonging to the quadrant of unreliable and hard to maintain domain. To prioritize which

modules to select for analysis, the tool's standard threshold values were increased. The rationale

was one of team software maturity level and the need to meet delivery of the application in four

months. This helped focus the developers on the most at-risk modules. Moreover, software

developers can tactically select which modules need peer-reviews based on the module's code

complexity. Program managers can set realistic times to fix code based on the use of

unstructured code.

We also established that Cyclomatic complexity can determine how many code coverage-related

tests should be performed and when testing can stop. We presented several levels of code

Fig 9 - Proof of Concept- Code Coverage for “Behavior Task”

Measuring Software Complexity to Target Risky Modules in Autonomous Vehicle Systems 11

coverage that can be measured, using instrumented software. The simplest was the module

coverage level, then line coverage level. But for mission critical software like autonomous

vehicles, at least branch coverage should be used, and for certain components requiring very high

reliability, there were two recommendations; coverage of every Boolean condition (MCDC) or

meeting the cyclomatic path or basis path coverage criteria. Certainly both can be applied. The

benefit of the most thorough levels of code coverage is assurance that the right tests were

performed to predict a low occurrence of errors. Equally important is that the code coverage

process is automated, thus providing quick, non subjective results. Finally, work remains to

understand how instrumented code affects the system's performance.

References

[1] Tartan Racing: http://www.TartanRacing.org

[2] DARPA Urban Challenge: http://www.darpa.mil/grandchallenge

[3] SCONS http://www.scons.org

[4] Validating the Performance of an Autonomous Car- AUVSI 2008 Proceedings- M.N.Clark et

al.

[5] Software Engineering for Real-Time Systems-ISBN-10: 0201596202- Jim Cooling 2003

[6] Structured Testing: A testing methodology using cyclomatic complexity metric, A.H. Watson

and T.J. McCabe, NIST special publication 500-235, 1996

[7] Elements of software science, M. Halstead, North-Holland, ISBN 0-137-20384-5, 1977

[8] A Software Complexity Measure, T. McCabe, IEEE Transactions on Software Engineering,

Vol. 2, pp 308-320, 1976

[9] McCabe IQ- www.mccabe.com/iq_qa.htm

[10] Understand- http://www.scitools.com/products/understand/cpp/product.php

[11] Wikipedia-Cyclomatic Complexity -http://en.wikipedia.org/wiki/Cyclomatic_Complexity

[12] Autonomous Driving in Urban Environments: Boss and the Urban Challenge Journal of

Field Robotics, accepted for publication- Urmson et al.

http://www.tartanracing.org/
http://www.darpa.mil/grandchallenge
http://www.scons.org/
http://www.mccabe.com/iq_qa.htm
http://www.scitools.com/products/understand/cpp/product.php
http://en.wikipedia.org/wiki/Cyclomatic_Complexity

