
T: 800-638-6316
www.mccabe.com

Page 1 of 11

Table of Contents

Code Review in the Software

Industry1

The Challenges of Code
Reviews …………………….....4

The McCabe IQ Approach to Code

Reviews...................................6

McCabe Functionality for Code
Reviews.................................10

References11

White Paper

McCabe Recommended Approach
to Code Reviews

“Why do you see the speck in your neighbor‘s eye, but do not notice the log in
your own eye?”

The quote above forms the principle behind code reviews. The benefits
obtained from performing code reviews are many and will be explained in this
paper, but it is important to understand the basic concept.

This simply states that a group of people reviewing code will find up to 82% of
the errors within the code prior to the commencement of testing (IBM). In
addition 80% of the lifetime cost of a piece of software goes into maintenance,
and hardly any software is maintained by the original author (Sun

 Who Should Read This Microsystems 1995-1999).
 Paper

 This document is intended
 for anyone who has

Purpose of this Paper

 responsibility for, or intends This document has been written to provide the answer to three basic
 to commence, a program of questions:
 Code Reviews within their
 organization. It is primarily • What is the function of code reviews in increasing productivity and code
 aimed at those in a quality?
 supervisory position who • What is the McCabe approach to code reviews?
 will be responsible for the • How can McCabe IQ be used to set up an automated code review process?
 quality of a system or group
 of systems.

Code Review in the Software Industry

Purpose of Code Reviews

Organizations that implement Code Reviews do so to achieve two distinct yet
at the same time overlapping objectives, which are:

T: 800-638-6316
www.mccabe.com

Page 2 of 11

• To achieve a reduction in errors during the development process, in order to

reduce wasteful testing time and subsequent (and costly) production errors

(Fagan 1979 & 1986,Boehm 1981 & Kaplan 1995)
• To reduce future maintenance costs by ensuring a standardized software

solution

These two objectives form the basis of all code reviews and can be further
expanded as follows:

• Regular code reviews are a powerful tool in the development process, as

developers tend to overlook mistakes that they have created themselves.

• Code reviews are sometimes used to ensure that the code produced conforms

to a given ‘standard’ in terms of its basic grammar, constructs and
complexity, thus helping to simplify the future maintenance of this code.

• Code reviews help to spread expert knowledge throughout a development
team. The suggestions and ideas which evolve during review sessions often
enable the group to take big steps forward in terms of the technology and
techniques used.

• Code reviews are often used to ensure that a deliverable to a client meets
the standards defined in the contract. Conversely, code acquired from a
third party to be maintained in-house is often subject to a code review to
ensure that it meets the standards defined in the contract.

• In more recent times the concept of refactoring, in languages such as Java,
has further enhanced the code review process. The review process can now
be used to make the reviewed code easier to understand and this broader
comprehension leads to even more useful ideas. When taking these ideas as
a source for an immediate refactoring to be implemented by the reviewers,
code reviews can deliver concrete results.

Common Approaches to Code Reviews

There are a number of approaches used for code reviews. They can be
categorized into three groups: peer reviews, automated code checking for rule
based compliance, and automated metrics based reviews.

Peer Reviews

This is the oldest and most common form of code review used in the industry
at present. Peer reviews range from simple line-by-line reviews to structured
walkthroughs to the latest Fagan inspections and refactoring reviews. These
techniques have a number of common challenges:

T: 800-638-6316
www.mccabe.com

Page 3 of 11

• Manual process

• Time consuming

• Objectivity

• Clash of Egos

• Require very careful planning if they are to be successful.
 XP

 The most extreme form of Ideally this process involves the author of the code sitting down in a room with
 the peer review process one or more reviewers and examining some or all of the code they have
 forms an integral part of produced. All parties will work according to a clearly defined plan of action and
 what is termed Extreme identify any errors in the logic or deviation from installation standards. These
 Programming (abbreviated are noted down in an action plan and at the start of the next code review a
 “XP”), where two check is made to ensure that all the remedial action has been applied.
 developers craft a piece of
 code together, one in the

 coder role, the other in the The only divergence from the above pattern is with refactoring, where the
reviewer role, and thus the changes are applied and tested as part of the review process.
review process is in real
time with the code
production phase. Automated Code Checking

In this approach a tool is used to perform a syntax check on the code and
identify any deviation from a predetermined set of coding standards. The
coding standards will be dependant upon the language used, but a selection of
what the reviewer will be checking for includes:

• Code layout

• Usage of Comments

• Conformance to label and variable naming conventions i.e. Hungarian

• Identification of Control constructs

• Conformance to internationally accepted programming standards i.e. MISRA

• Mixed Mode arithmetic

• Initialization of variables
• Indexes, Pointers and subscripts correctly initialized before usage and tested

correctly

• Identification of Dead Code

• Identification of dangerous coding practices.

This form of review is currently the most popular form of automated review for
which there is a wide range of products available. The main drawbacks of this
approach are threefold:

• Excessive number of errors in legacy code

• Different tool required for each language

• Different results formats and reports for each language

• Selection or modification of programming standards.

T: 800-638-6316
www.mccabe.com

Page 4 of 11

The Example of
“Cyclomatic Complexity”

Cyclomatic complexity is a
measure of the number of
logical paths (decision se-
quences) within a function of
code. Independent studies
indicate that defects
exponentially increase for
functions that have more than
10 logical paths. Of all
metrics in the industry,
cyclomatic complexity has the
highest correlation to defects,
thus it is an important
measurement to track.

Automated Metrics Based Reviews

In this approach a tool is used to perform a check on a wide range of metrics
that measure not just the grammar of the code but also its basic
characteristics in code engineering terms. Metrics are either collected (by

measuring such elements as lines of code, the number of logical paths, and the
number of ‘children’) or calculated (derived from measurements using
mathematical formulas). Using the resulting values, reviewers examine such
factors as Cyclomatic Complexity and Unstructure (McCabe 1976 & 1979),
Software Science (Halstead 1977) and Composite measures of Software
Complexity (Curtis 1980).

Metrics are generally collected and calculated on a module-by-module basis
and used to highlight areas of code suitable for further manual inspection.
Metrics can be made indicators of code quality by establishing meaningful
thresholds for them. Numerous studies as well as standards published by the
National Institute of Standards and Technology (NIST) have provided
guidelines for key metrics thresholds (some will be discussed later in this
paper). However, each organization generally creates a suitable set of
thresholds appropriate to its development environment and code base.

This paper will focus on the following subset of metrics:

• Cyclomatic Complexity (McCabe)

• Essential Complexity (McCabe)

• Integration Complexity (McCabe)
• Program Size (Halstead)
• Comment Density (General)

• Logic Density (McCabe)
• Nesting Depth, including Switch Depth & Loop Depth (General)

• Maximum Number of Predicates in a single statement (General)
• Fan-in and Fan-out ratios (McCabe)

The range of metrics that can be measured is very large, but most
organizations typically use some or all of the above.

The Challenges of Code Reviews

There are a number of distinct challenges when using or attempting to
implement a code review process, particularly in terms of productivity,
objectivity, and approach.

T: 800-638-6316
www.mccabe.com

Page 5 of 11

Using International
Standards

The selection of metrics and
thresholds in the interests
of setting objective standards
can be a very contentious
process. It is for this reason,
as well as to simplify the
process, that organizations
increasingly turn to
internationally recognized
coding standards, though
sometimes with minor
variations to reflect their own
environment.

Some internationally
recognized coding
standards include: C
(MISRA), Java (Sun
Microsystems), VB
(Microsoft Programming
Conventions for VB), Cobol
(IBM Programming
Standards for Cobol).

Using such standards has the
added benefit of easing the
movement of development
staff in the industry, the use
of sub- contractors or even
outsourcing, as more and
more organizations turn to
internationally agreed
standards.

Productivity

Code Reviews are seen as unproductive, typically doubling the time it takes to
‘craft’ the code in the first instance. It has however been identified by a wide
range of studies, both by individuals (Boehm, Kaplan, Gilb) and corporations
such as IBM (Santa Rosa & Rochester), that the cost of the removal of errors in
the coding phase can be as low as 1/92 of the cost of removal in the Customer
Release phase.

The other issue with Productivity is the sheer volume of code that may need to
be reviewed. In the ideal world, all the source code would be inspected (as the
requirements of CMM level 3 and up dictate). In practice, however, this is
generally not feasible and some way has to be found to enable the reviewer to
focus only on the code that needs to be examined as a matter of urgency, for
example, because it is at a higher risk for developing defects in future revisions
or because it is particularly costly to maintain. This would leave the bulk of the
code either to be examined on a random basis, if this is legacy code and
resources are insufficient, or at least prepare a prioritized sequence for the full
code inspections that are required as we move up the CMM scale.

Objectivity

This is perhaps the greatest single issue in Code Reviews, namely the difficulty
in persuading developers that what they have crafted may need to be altered

to conform to a common norm. Developers have two basic issues in regards to

Code reviews at a personal level.

• Someone else wrote the code so why should they be criticized for the way it

was written

• They wrote the code and how dare someone criticize their craft. Coding is an
art, not a science

These are admittedly extreme positions, however they provide a somewhat frank
start to the issue of objectivity. All too often code reviews get side tracked into
personal issues, especially where a ‘loose’ code review process is being followed.

The challenge here is to adopt a common set of standards so that all agree on
what is required and how the process should be run - specifically, to agree on a

set of coding standards and metrics thresholds. Both need to be chosen
carefully to fully reflect the environment in which the organization is working.

The aim is for inspections to approach what has been described as “ego-less
programming” (IBM).

T: 800-638-6316
www.mccabe.com

Page 6 of 11

A Common Interface

In addition to addressing the
challenges of approach,
productivity, and objectivity,
the McCabe IQ approach
addresses one of the major
limitations of automated code
reviews - that they are
language specific. By
contrast, McCabe IQ provides
a common interface for most
major languages, including C,
C++, Cobol, Fortran,
Java/JSP, M204, Perl, PL1,
and VB. This is particularly
important as the number of
languages used in any given
development environment is
continually growing.

Approach

The process by which a code review or inspection is carried out will to a great
degree determine the degree of success and acceptability of the whole concept
of Code Reviews within an organization. The various papers on this subject
recommend a team of up to four people known as inspectors, each performing a

distinct task with one member of this group as the author. The aim is to identify

defects and log them, with no attempt to correct them ‘on the fly’.

• The inspectors describe each defect in about 7 words or less using simple

English
• The inspectors do not determine how to fix the defect, this is the

responsibility of the author.

• There should be no discussion as to whether the defect exists; once it is
logged, it is a defect.

• The author is not allowed to explain, describe or defend their work, except in
response to a direct question.

• The inspectors must be trained in the task.

The correction process is entirely in the hands of the author, who at a pre-
determined time must show the corrections to the chief moderator.

The McCabe IQ Approach to Code Reviews

McCabe IQ tool provides up to 105 different code metrics and is therefore
ideally suited to implement a metrics-focused code inspection regime.

The McCabe IQ approach is to identify the methods, functions, controls or
perform ranges in the code that exceed the selected thresholds for any of the
metrics that have been selected by the organization. This enables the inspection

team to focus their attention on the code that requires further examination. It

also enables the developers to review their code as part of the development

process to ensure that the code will meet the requirements of the organization

before the code is inspected.

The aim of this closed loop process is to increase productivity and reduce the
subjective element from the code review process, and thus address a number
of the major challenges of Code Reviews.

The McCabe IQ approach to code reviews consists of three interlocking
elements:

T: 800-638-6316
www.mccabe.com

Page 7 of 11

The Purpose of Derived
Metrics

Derived metrics are designed
to aid supervisors who may
not necessarily wish to have
the level of detail provided by
the individual metrics.
Derived metrics are also
designed to address code
quality in general, abstract
terms in order to make the
Code Review concept more
acceptable to those whose
background is not, or interest
may not be, in Software
Engineering.

• Selection of metrics

• Selection of thresholds
• Identification of “outliers” - code that exceeds the lower and upper

thresholds.

Selection of Metrics

It is important that the organization initially selects a small set of metrics that
can be agreed upon by both QA personnel and developers. This is done to fine
tune the process and get buy-in from all parties. Once the process is accepted
and up and running, further metrics can be added as required.

The initial selection should include:

• Cyclomatic Complexity (McCabe)

• Essential Complexity (McCabe)

• Integration Complexity (McCabe)
• Comment Density (General)

• LOC (McCabe & Halstead)

Some of the additional metrics that can be added later include:

• Program Volume (Halstead)

• Nesting Depth, including Switch Depth & Loop Depth (General)

• Maximum Number of Predicates in a single statement (General)

• Number of Unique calls excluding Library routines (McCabe)

• Logic Density (McCabe)
• Fan-in and Fan-out ratios (McCabe)

In addition, McCabe IQ can calculate derived metrics, based on a combination of

metrics available in the product. In order to simplify the code review process
McCabe provides four derived metrics indicative of:

• Size

• Unreadability

• Unstructure

• Modular Size.

Each of these is calculated from three or more of the previously defined
metrics, and each is subject to a modification factor. Their use must be
carefully calibrated in order that the modification factor will truly reflect the
characteristics of the code.

T: 800-638-6316
www.mccabe.com

Page 8 of 11

Selection of the Acceptable Thresholds for Each of the Metrics

The selection of thresholds is key to the code review process, especially when

 More on Thresholds dealing with legacy code. Thresholds allow reviewers to identify where the
code quality has degraded to unacceptable levels. The following table details

 The full range of thresholds industry standard thresholds for the metrics mentioned earlier in this paper.
 for individual metrics is
 covered in the separate
 McCabe paper titled Lower Upper

 “Metrics and Thresholds in Metrics Threshold Threshold

 McCabe IQ.” Cyclomatic Complexity 10 15

Essential Complexity 4 8

Integration Complexity 4 8

Comment Density <20% <15%

Logic Density .14 .42

Fan-in and Fan-out ratios (Site Dependent)

LOC 20 50

Program Size (Site Dependent)

Nesting Depth, including Switch Depth & Loop Depth 4 6

Maximum Number of Predicates in a single statement 4 6

Number of Unique calls excluding Library routines (Site Dependent)

Typically, organizations have an initial threshold selection process, followed by
periodic reviews of not just the code but also of the thresholds.

Identification of the Code that Exceeds the Lower and Upper
Thresholds (‘Outliers’)

The process to identify code that exceeds the lower and upper thresholds starts
with the creation of a Custom Report within McCabe IQ that produce lists of
methods, procedures, controls or Perform Ranges which exceed the limits

given above.

The custom reports may take many forms, from simple lists with multiple
metrics, to Kiviat diagrams with multiple metrics, to Scatterplot graphs where
we plot the distribution of code against two metrics (see “McCabe Functionality
for Code Reviews” later in this paper).

Developers can use the Custom Reports to monitor their own progress and
ensure their code satisfies the code quality criteria for the organization. QA
team/Code Inspectors can use the Custom Reports to ensures that their
attention is focused on the ‘questionable’ code, leaving the bulk of the code for
examination in the standard maintenance cycle.

T: 800-638-6316
www.mccabe.com

Page 9 of 11

Automated Reporting

The use of an automated
process to identify the code
that requires manual
inspection increases the
productivity of the Code
Inspection process, thus
satisfying one of the
challenges stated earlier. In
addition this automation also
removes any personal
agendas from the Code
Review process, thus
satisfying the second of the
major challenges in Code
Reviews.

The Review Process

Reporting

McCabe IQ is used to create reports that give a snapshot picture of the code.
A typical selection of reports for the code review process would be comprised
of:

• Scatterplot of Complexity vs. Structure Distribution

• Scatterplot of Complexity vs. Comment Density

• EQ Quality Report.

The reports above conveniently answer the key questions of Size,
Understandability, Structure, and Modularity.

Once the reports have been produced, the review team can examine them in
order to identify the code that requires manual inspection. The review team
would then manually inspect the ‘questionable’ code, draw up a list of defects,
and produce a schedule for the correction of defects. This Code Review would
occur typically before the commencement of Unit testing and again when the
code is handed over into production.

Visualization

McCabe IQ, through its visualization capabilities, provides the review team with
the capability to obtain a detailed visualization of any component that has been
identified as requiring closer inspection. McCabe IQ displays each module of
code, not only in its native programming language format, but also more
importantly, with its logic diagram by its side.

The detailed inspections can be performed in one of three ways:

• Using IQ generated reports and the context sensitive module names

• Using the Printed reports and the Find functionality
• Using the Graph/ASL tool to step through all the components, stopping only

at those whose logic graph appears over complex.

The last of the three techniques is best suited for reviews carried out either by
the developer or by the direct supervisor, prior to a formal review.

T: 800-638-6316
www.mccabe.com

Page 10 of 11

 More on Metrics

 This paper does not address
the full capabilities of the
McCabe Metrics. For more
information, read the
McCabe paper titled, “Metrics
and Thresholds in McCabe IQ.”

McCabe Functionality for Code Reviews

McCabe Metrics

As has been stated earlier in this paper, McCabe IQ has the capability to record
up to 105 metrics for a given set of source code. These metrics are gathered at
the module (function/method/Perform Range) level, Program Level (one or more
source files), or System Level (one or more programs). In addition there is the full
range of OO metrics as defined by Chidamber and Kemerer (1991 & 1994).

McCabe Reporting

The McCabe/IQ tool comes with three discrete reporting capabilities:

Visualization Controls
With the exception of the
Graph/ASL listing which only
works at the module level, all
the other visualization tools
can be at whatever level of
selection the user requires.
McCabe IQ also provides
extensive grouping
capabilities to enable a user
to reduce the scope of the
initial analysis according to a
pre- determined criteria
based on file name,
functionality, variables,
metrics, and so on. This then
enables Code reviewers to
focus their efforts
accordingly.

• Standard Reports provided with the tool, comprises some 35 reports, both

textual and graphical

• Custom Reports that can be generated from the Standard reports using the
in-built Report Generator to produce text reports, graphs, or files suitable for
input to spreadsheet packages

• McCabe/EQ, which makes of an embedded RDBMS to create and manage a
database of metrics for a given analysis or set of analysis. This is supplied
with a set of standard reports and a powerful report generator. For further
details on this option refer to the McCabe web site at www.mccabe.com.

McCabe Visualization

McCabe IQ provides extensive visualization capabilities at all levels of an
analysis. The basic McCabe IQ visualization tools are:

• Battlemap - a high level view of all components analyzed and their inter-

relationships (calling hierarchy)

• Graph/ASL listing - the low level view of an individual component or module,
showing side by side, the native programming language format, and the
associated logic diagram

• Scatterplot - Distribution Graph plotting any two metrics, when used within
the tool is context sensitive and can be used as the first stage in a search
process

• Kiviat Diagrams - Distribution Graph plotting up to five metrics.

T: 800-638-6316
www.mccabe.com

Page 11 of 11

McCabe Automation

Most aspects of the code review process using McCabe IQ can be automated
with the McCabe IQ Command Language capability (CLI).

The McCabe IQ CLI command is “CLI METRICS”. It can be executed from the
command line using the following parameters:

-pcf McCabe PCF name
-output Output file to hold Results
-report Name of Custom report to be run

For example, the following runs a Custom Report called “quality_level1”
against the Code analyzed in c:\CV6\mcChess.pcf, and it places the resulting
report in c:\listings\qual_rep1.txt.

CLI METRICS –pcf c:\CV6\mcChess.pcf –output c:\listings\qual_rep1.txt –report quality_level1

References

Boehm B. Software Engineering Economics. Prentice-Hall 1981.

Chidamber, S.R. and Kemerer, C.F., “Towards a Metrics Suite for Object Oriented
Design”, Proc. of the 6th ACM Conference on Object Oriented Programming, Systems,
Languages and Applications (OOPSLA), 1991, Phoenix, AZ, pp. 197-211.

Chidamber, S.R. and Kemerer, C.F., "A Metrics Suite for Object Oriented Design", IEEE
Transactions on Software Engineering, vol. 20, pp. 476-493, 1994.

Curtis W. “Management and Experimentation in Software Engineering”, Proc. IEEE Vol.
68 No 9. September 1980.

Fagan M.E. “Design & Code Inspections to Reduce Errors in Program Development”, IBM
Systems Journal Vol. 15, No. 3 1976.

Fagan M.E. “Advances in Software Inspections”, IEEE 1986.

Halstead M. Elements of Software Science, North Holland 1977.

Kaplan, C., R. Clark, and V. Tang. 1994. Secrets of software quality: 40 innovations
from IBM. New York, McGraw Hill.

McCabe T.J. “A software Complexity Measure” ,IEEE Trans Software Engineering Vol2
December 1976.

Sun Microsystems Inc. ,Java Code Conventions. 1995-1999.

