cCabe

SOFTWARE

Complexity Analysis of Hostile Applets

Forensics: Using Path-Oriented Metric Analysis to Unravel Hostile Applet
Algorithm Patterns, Signatures, Similarities, Authors and Derivations

Complexity Analysis of Hostile Applets

Abstract

This paper uses known hostile Java
applets as an example baseline that
could be analyzed and profiled using
path analysis to better understand the
algorithms, identify their patterns and
leverage the analysis to identify
signatures, similarities, authors and
derivations.

About Hostile Applets

The tool of choice for many hackers has
been mobile code. By enticing users to
a malicious web page that contains a
specially crafted Java applet or
application a skilled hacker can wreak
havoc.

S Sy

%
R

On the internet there is a
comprehensive collection of hostile Java
applets. A hostile applet is any applet
which, when downloaded, attempts to
monopolize or exploit your system's
resources in an inappropriate manner.
Any applet which performs, or induces
you to perform, an action which you
would not otherwise care to perform,
should be regarded as hostile.

The power and complexity of the Java
language make it extremely likely that e
security holes will continue to appear in

years to come. While the number and 1
nature of security holes in Java might be
frightening to some, they come as no
surprise to computer security
\/
|
/

professionals and hackers. Any tool as

complex and as powerful as Java, being

a product of human ingenuity, is bound

to have numerous errors in both concept
and implementation.'

Applets must obey the security rules
that are put into place by the developer, E
using the Java security model. This

security model is not infallible -

implementing the security model is

complicated and rules are not always

followed. Additionally, Java security can

be sidestepped and there is always the)
danger the user’'s computer, or company’s network, can be hijacked." The most serious malicious applets
find a way to circumvent Java'’s security mechanisms and gain complete control of the host machine.
These attack applets depend on exploiting a vulnerability in a Java implementation. Other classes of

McCabe Software, Inc.
(800) 638-6316 e URL- http://www.mccabe.com e 41 Sharpe Drive e Cranston, Rl 02920

Complexity Analysis of Hostile Applets

malicious applets may disturb the victim without circumventing Java’'s security mechanisms by behaving
in an annoying or disruptive way that is within the behaviors permitted by the policy.

Java has always shown promise by being available anywhere, anytime, on any device and is nowadays
also integrating with new software inventions such as web services, XML1, mobile and embedded
applications. The amount of code developed using this multi-platform technology is huge and demands
high security requirements. Various tools and techniques exist that can help to produce robust, reliable
and secure software, however there are probably just as many methods for breaking in to code.

Why Hostile Applet Path Complexity Metrics Analysis?

Design, code, and most recently, requirements metrics have been successfully used for predicting fault-
prone modules."They can also be used to profile and uncover security exploitable bugs.

The Cyclomatic complexity of the control flow of the program can show the characteristic style of a
programmer and may suggest the manner in which the code was written. Programmers tend to show
repeating patterns in their programs. It is possible to identify ownership of a program by examining source
code metrics. Programmers are skillful with a limited set of constructs, mainly those that are well known
to them and that allow them to write programs faster and more reliably. It is unrealistic to assume that any
programmer can develop programs efficiently and correctly using an unfamiliar programming style. This
does not only apply to the structure of the programs, but also to the look and feel of it." Like naturally-
evolved human languages, programming languages allow developers to express certain constructs and
ideas in different ways. The differences in the way developers express their ideas can be captured in their
programming styles, which in turn can be used for author identification. In the context of programming
languages, it has been shown that capturing style in source code can help in determining authorship.’

McCabe metrics have been used for years in tools used for software forensics. One of the earliest set of
techniques for plagiarism detection in software is the attribute counting techniques which count the level
of a certain attribute contained within a piece of code. These systems use a number of metrics such as
Halstead’s software science metrics and McCabe’s Cyclomatic complexity."

Being cognizant of control and data flow paths within your codebase is crucial to uncover software
security vulnerabilities located off the beaten path. Security breaches are often a result of multiple
interactions within the software that, on the surface, appear innocent. Criminal attackers can disrupt a
system by exercising a specific sequence of interdependent decisions that produces unforeseen and
possibly disastrous consequences. Analyzing control flow paths and subtree structures is crucial for both
testers and developers to verify control flow integrity and uncover serious security flaws hiding in the
code. This analysis may also be used to find patterns, signatures and derivations of exploits. As part of a
secure, trustworthy software development process, identifying and exercising paths through the code to
ensure that program behavior is correct and expected can help find the nastiest of exploits. Cyclomatic
complexity and basis path analysis can be very useful in scrutinizing risky code structures and control
and data flows. It can also be used to develop profiles of known exploits.

Cyclomatic Complexity has been mentioned as a possible detection method for particularly nasty bugs. In
the paper “The Little Hybrid Web Worm that Could,” Billy Hoffman, Lead Researcher at SPI Dynamics,
and John Terrill, Co-founder of Enterprise Technology, had this to say: “One possible detection method is
to examine the Cyclomatic Complexity or McCabe Complexity of a piece of arbitrary JavaScript code. The
overall complexity diagram and number of closed loops should remain almost identical regardless of the
number of mutations performed on the code. This follows since our mutations change the syntax of the
code but not the underlying functionality then the complexity of that functionality should remain the same.”
The authors are investigating whether a complexity diagram alone is capable of uniquely identifying web
malware.”" If Cyclomatic complexity can apply to self-modifying script mutations, it can also be used for
manual mutations coded by a hostile programmer, in any language. Control flow structure can be used to
characterize functionality regardless of syntax variations.

McCabe Software, Inc.
(800) 638-6316 e URL- http://www.mccabe.com e 41 Sharpe Drive e Cranston, Rl 02920

Complexity Analysis of Hostile Applets

Many tools used to scan for security vulnerabilities operate based on the source code syntax which can
be tweaked to avert detection. Finding exploit derivations is not always easy with these tools. As others
have pointed out “When the tool failed to detect a bug, it was for one of two reasons: the absence of
security rules specifying the vulnerable function, or the presence of a bug in the static analysis tool.
Complex code is more likely to contain complicated code constructs and obscure format string functions,
resulting in lower detection rates.”" McCabe metrics have also been used to estimate the degree of
protection achieved by a suite of software protection techniques”™

Sometimes source code from your codebase itself is tweaked by changing, or swapping out existing code
into a devious exploitable pattern. Once an Applet is written, it can be reused over and over again. Also,
for novice programmers, ‘slick’ features can be added quite easily using code written by someone else.

Most static analysis tools only offer textual information leaving the security analyst the remaining tasks of
understanding and patching the code. Visual information is believed to be helpful when fixing security
flaws and using dependence graphs for pattern matching security properties has also been suggested.”

For these reasons leveraging McCabe path-oriented analysis can help unravel hostile applet algorithmic
patterns, signatures, similarities, authors and derivations.

Examples of Hostile Applet Path Complexity Metrics Analysis

Here are some of the types of hostile applets analyzed for software complexity and used as an example
baseline for metric pattern match analysis.

DoMyWork.java

This Java applet makes you try to factor a moderately long integer by trial division, and it reports the
results back to its home. Clearly the same could be done for many, many other sorts of calculations.
While it performs no hostile actions per se, it does put your workstation to work for somebody else,
perhaps a business competitor or someone trying to crack codes. To create an applet that does other
sorts of work, you can replace the class GetFactor with another working class and adjust the classes
Report and ReportServerSocket accordingly.

Ungreatful.java

This Java Applet tries to convince you that your system is having a security problem and that you must
now login. If you do so, your user name and password are sent by the browser to the home of this applet.
In any event, the applet then proceeds to the applet proceeds with a denial-of-service attack against you.

Other hostile applets include:

* Hijacker.java (A Java trojan horse that can hijack your compiler)

* PublicEnemy.java (A Java trojan horse that directly hacks bytecode)

* Attacker.java (Attacks Beginner.class and makes it deviant)

* HoseMocha.java (A Java application that defends your classes from Mocha)
* Mutator.java (A Java application that mutates and deletes itself after 5 runs)
* Mutatorl.java (Mutator.java updated for Java Version 1.1)

Following is a report of path metrics for the source code for some of these applets.

McCabe Software, Inc.
(800) 638-6316 e URL- http://www.mccabe.com e 41 Sharpe Drive e Cranston, Rl 02920

Complexity Analysis of Hostile Applets

Page 1 01/26/09
Hostile Applet Path Metrics

Frogram: HostilelppletPathbnalysis

Module Name w3 ew (5] iw () gdw (5]
PublicEnerny.wainijava. lang. 3tr 20 1
HoseMocha.main (java. lang.3trin 15
LoginServerSocket.main(javra. la 11
ReportlerverSocket.main(java.l 11
Login.commanicate [java. lang. 3t i0
Report.cormmmnicate (Jjava. lang. 3 10

HostileThreads.ruan() =]
Mutator .mwain(java. lang. 3tring[=]
Mutatorl.main(java. lany. String =}
ScapeGoat.init () 7
Dupe.main(java. lang. String[]) 7
GetFactor.GetFactor () 7
CutPanel . .action(java.awt . Event [
Consuarme .. ruani))
DonbhleTrouble.runi) 6
TripleThreat.ruanil 6
Forger.runi() 5
Attacker.main(java. lang.String =1
MNoisyEBear.ruani) 5
HostileThreads.init () gt
Hijacker.main(java. lany.3tring 5
DoMyWork.init () 3
SilentThrest.runi) 4
Ungratefal.ran() 4
Wasteful.runi) 4
AttackThread.runi) 4
DoMyWork.rumni) 1
Forger .maille (java. lang. String 3
Forger.init() 3
ScapeGoat.ruani) 3
Ungrateful.init () 3
ErrorFrame.ErrorFrame (java. lan 3
Wasteful.fikonacci ([long) 3
Ungratefual.start () =
Wasteful.init () 2
ScapeGoat.start () 2
Wasteful.start () 2
DonbleTroubhle.start () =
Forger.start() =
Forger.stop () =
DoMyWork.start () 2
DounbleTrouble.init () 2
TripleThreat.start () 2
MNoisyEear.monaselbown (java.awt . E =
TripleThreat.init (] =
HostileThreads.start () =
MNoisyEBear.staop() 2
MoisyBear.start (] 2
Consume . init () z
Consuame .. Sstart () =
Login.Login{int) 1
HostileThreads.paint [(java.awt . 1
HostileThreads.npdate (java.awt 1
Calculstor.ruani) 1
Calculator.stop () 1
MNoisyEear.init () 1
Consame .. stop () 1
HostileThreads.stop () 1
Consume . update [java.awt . Graphi 1
MNoisyEear.update [java.awt.Srap 1
MNoisyEear.palnt (java.awt.Sraph 1
Consume . paint (java.awt .. Graphic 1
AttackThread.paint (Jjava.awt . Gr 1
Report.Report (java. lang. String 1
AttackThread.update (java.awt .. & 1
DoMyWork.stop () 1
AttackThread.stop (] 1
CntPanel .. CutPanel [java. lang. 3t 1
WarningPanel.TarningPanel (java 1
SilentThrest.init () 1
SilentThrest.stopi] 1
ErrorPanel.ErrorPanel (java. lan 1
SilentThreat.update (java.awt .. 1
SilentThreat.paint (Jjava.awt . Gr 1
SilentFrame.SilentFrame (java. 1l 1
DoMyWork. paint (java.awt . Graphi 1
ErrorMes=sage.runi) 1
TripleThreat.stopi] 1
AttackThread. init (] 1
TripleThreat.uapdate (Jjava.awt .G 1
TripleThreat.paint (java.awt . Gr 1
TripleFrame.TripleFrame (java.l 1
ErrorMessage.stop (] 1
DounkhleFrame.oubleFrame (Jjava. 1l 1
Ungratefual.stop () 1
DonbleTrouble. paint (Jjava.awt .G 1
Tngratefual.npdate (Jjava.awt .. Gra 1
Ungrateful.paint (java.awt .. Gran 1
DonbleTrouble. update [java.awt . 1
DoMyWork. update [Java.awt . Zraph 1
Wasteful.stop i) 1
DonbleTrouble.stap () 1
Wasteful .update (Jjava.awvt.Graph 1
Wasteful.paint (java.awt.Graphi 1
AttackFrame. AttackFrame (jJava. l 1
Total: 283 137 213 152
Average: 3.08 1.44 2.24 1.92

McCabe Software, Inc.
(800) 638-6316 e URL- http://www.mccabe.com e 41 Sharpe Drive e Cranston, Rl 02920

Complexity Analysis of Hostile Applets

An interesting example of a distinct path complexity pattern is PublicEnemy.java. Given a target
directory, this Java application searches it and all of its subdirectories for Java class files. Once a class
file is located, PublicEnemy alters the contents of its access_flags for the class, its fields, and its
methods. The results are the following:

1. The class becomes public.

2. Any final fields and methods become non-final; any non-public fields and methods become public;
and all public fields and methods remain so. The following is the code’s global data control
flowgraph.

B GraphiListing for ‘HoseMocha.main{java. lang.String[])’

I Zoom [h H Zoom Out] [Prirt...][Save A][Save Text...][Cloze][Help...]Graph[45]%: < | ?
Maanification Level: 2

£] % Page of 4 HoseMocha.main(java.lang. Stringl]]

Program: HostilefAppletPathAnalysi%0/26/09 Annotated Source Listing -

HoseMocha.mai. . .lang. String[]l) (ARiperimposed __ =
Cﬁlmtlc Crapl Progran : HostiledppletPathinalvais W

lomatic 15
Essential 1 File : CiyDocuments and SettingsyTom McCabe'DesktophFuzzhHosti!

Daziangd Language: cw_Jawva inst

Module Module
Letter Nane wiF) ew(F) iv(G!

_6B 6E. W e e 080 W SR e s e s e e SRR TR R L

AR, HoseMocha.main(java. lang. Steing[1) 15 1

21 ARD AR1 public static woid main(3tring[] arogv)
22 ARZ AR3 int fpointer = &; // Where are we
23 AR4 ARS int cp_entries = 1; s/ How big is
24 ARE AR7T int Code_entry = 1; 7/ Where is ti
25 ARS ARS int num interfaces = 0; J/ How mar
26 AR10 AR11 int num_fields = 0; // How many £:
27 AR1Z AR13 int num f_attributes = 0; // How 1
28 AR14 AR15S int num methods = 07 /7 How many 1
z8 AR16 AR17 int nmum n attributes = 0; // How 1
30 Jf How on earth do I use this thing?
3l AR13 AR19 if {argw.length != 1) {
32 ARZ0 AR21 AR2Z* ARZ3

S¥stem. out.println("Try \"Jjawv:
33 ARZ24 AP2S5 ARZET ARZT
£ | 2>

McCabe Software, Inc.
(800) 638-6316 e URL- http://www.mccabe.com e 41 Sharpe Drive e Cranston, Rl 02920

Complexity Analysis of Hostile Applets

Hijacker.java is a Java Trojan that subverts Sun's javac by adding a hostile main class to the user's
CLASSPATH ahead of classes.zip. In this case the subverted compiler simply announces its presence
and appends the string "Hijacked!" to class files that it produces, but it could just as easily infect them

with a Java Platform virus. Again this is another example of a distinct control & data flow pattern.
Following is the code’s flowgraph.

B Graph/Listing for ‘Hijacker.main(java.lang.String[])’

[Zoomin][ZoomOuw | [Pint.][Saweds. [SaveTes. |[Close |[Help.. |Graph (455 £ | P
Magnification Level: 2
< | % | Page 1 of 4 Hijacker.mainljava.lang. String(])
Program: HostilefippletPathfinaly=i%0/26/09 Annotatedhiaure ERLESting e
Hijacker.main. ..lang. Stringl[l1) (R@Nperimposed __
Eﬁiﬁ%ig Sraph },’g;';rg,ﬂg“ e Program : HostiledppletPathinalysis i
gsst_antlgl 1 Plain Edges File : C:yDocuments and 3ettings)Tom McCabe'\Desktop Fuzz'Hoati!
SELd Lanmmage: cw_dJdawva_ inst
Module Module
Letter Namne viE) ew(G) iw(G
40 Hijacker.main(jawa.lang. 5tring[]) & 1
5 27 400 AQ1 public static woid main (String[] arge
ggg* 28 /4 The integer array containing a hacked I
£ = 20 agz int[] hijacked = {
30 A3 202,
31 254,
32 186,
33 180,
-
34 o,
-
¥ 35 3
g 36 0,
37 as,
=18 L 1,
= &0
= 39 109,
40 8. b
1| m| 2
7

McCabe Software, Inc.
(800) 638-6316 e URL- http://www.mccabe.com e 41 Sharpe Drive e Cranston, Rl 02920

Complexity Analysis of Hostile Applets

1. McCabe IQ Source Code Metric Comparisons

Known Hostile Java Applets can be used as a baseline to be profiled. After the analysis is done and
saved using the McCabe IQ toolset, it is fairly trivial to search within your source code to find code
patterns and potential exploitable logic tweaks. Finding exact matches of patterns can be harder with
lower complexity values. In addition to using McCabe path-oriented diagnostics such as Cyclomatic,
essential, module design and global data complexity metrics, you may need to experiment using different
elements. Path-oriented analysis and profiles can be used to identify exploits, authors and derivations.
The analysis and profiles may also be leveraged to determine where in your codebase source code and
logic can potentially be tweaked to create an exploit.

M Specify Search Criteria g|
Title: | |
Author: | |
Ayailable Elements: Selected Elements:
call pair e ac [50)
call pair cow actual parameter names (50)
called module names actual parameter types (50)
called module_ types all code (50
cd all lines (50)
cdec
chatiged numeric b branch (50)
Weight: < >
50

blanksz [Blank Lines of Code)

[Save][Cloze][Help...]
Added Metric: blanksks

McCabe Software, Inc.
(800) 638-6316 e URL- http://www.mccabe.com e 41 Sharpe Drive e Cranston, Rl 02920

Complexity Analysis of Hostile Applets

Date: 11/03/09

Module Comparison Tool Report

Program: Hostileldpplets2
Search Criteria: Control 3tructure Comparison
Fearch Domain:

Program MName Location Date Title

Hostiledpplet (pcf)

Mawimum similar modules: 10
Minimum similarity score: 75%
Minimum w(G) for search: 3
Total matches found: =2

Module Fimilar Module(s) 3imilarity 3core

[no matches
(o matches

[no matches
(o matches
[no matches
(o matches
[no matches

[no matches
o matches
[no matches

in
in

in

in
in
in
in
in
in
in

threshold)
threshold)

threshold)
threshold)
threshold)
threshold)
threshold)

threshold)
threshold)
threshold)

McCabe Software, Inc.
(800) 638-6316 e URL- http://www.mccabe.com e 41 Sharpe Drive e Cranston, Rl 02920

Complexity Analysis of Hostile Applets

2. Finding Control and Data Flow Similarities

A good example that can be used to illustrate a derivation can be found within the Hostile Applet

baseline. Two close matches within the Hostile Java Applet codebase itself exist. Class metrics for the

DoMyWork and Ungrateful Applets look similar and warrant further analysis.

Class Metric Reports for DoMyWork and Ungrateful. Applets:

Class Summary for DoMyWork:
Muwber of Children:
Depth in Class Hierarchy:
Response for Class:
Weighted Methods Per Class:
Coupling of Class:
Mwber of Parents:
Fercentage of Public/Protected Data:
Lack of Cohesion of Methods:
Accesses to Public Data:
Depends Upon Child:

Sum wiG): 13
Avg wi(G): 2.17
Max wiG): 4
Max ew(G): 1

Clazss Member List:
DoMyWork. paint (java. awt. Graphics)
DoMyWork.update (java. awt. Graphics)
DoMylWork. run ()

DoMyllork. stop ()
DoMyllork. start()
DoMyllork. init()

Nunher of non-library modules: 6

Has Specification/Notes? No

Class Summary for Uhgrateful:
Munber of Children: AL
Depth in Class Hierarchy: 2
Response for Class: [
Weighted Methods Fer Class: (3
Coupling of Class: o

Mumber of Parents: z

Percentage of Public/Protected Data: 100
Lack of Cohesion of Methods: 76
Accezses to Public Data: 15
Depends Tpon Child: o

sum viG): 12
Avg wiG): 2.00
Max wiG): 4
Max eviG): 1

Clazs Member List:
Tmgrateful.paint(java. awt. Graphics)
Tngrateful.update (java.awt, Graphics)
Tngrateful. run()

Tngrateful.stop()
Tngrateful. startc()
Tngrateful.init()

Number of non-library modules: &

Has pecification/Notesz No

10

(800) 638-6316 e URL- http://www.mccabe.com e 41 Sharpe Drive e Cranston, Rl 02920

McCabe Software, Inc.

Complexity Analysis of Hostile Applets

Here are the flowgraphs and comparison report for the Ungreatful.run module within the Ungrateful
Applet and the DoMyWork.run module within the DoMyWork Applet. The path metrics and flowgraphs are
strikingly similar. Upon further analysis, the path report helps isolate were the rogue code was tweaked to

make a new exploit derivation.

Program: HostilefppletPathfinaly=iif02/0%

DoMyWork.run() (T) Superimposed
Cyclomatic Graph d Flows
yclomatic 4 i Loop Exits i Progran

Ezzential 1
Design 2

Plain Edges File

!
5

1l
L]

Module
Letter

=1l
er]
T
Il
o
[}
P
PR 3
oo
oy
5

L L L L, o
N NS SIS
T A 080m 0 AL A T LBk
W oo oo
@ -1

(L L, s [
A ARSI PRI
M] iRl HEwd kb
~1 -1
Aoy

43 76

* g9
a0
- 91
92
143 |
93
<
Program: HostilefppletPathfinalysil/f02/09
Ungrateful run{) (CH) Superimposed
Cycl tic G h d F1
Eroiomatic grov . frerd How — rogram :
Eggential 1 L Plain Edges File
Degign 2 i
" Lancuage:
r HModule
L Letter
T{g-
Eg CH
_E ¥ 67
:%8 6d

Annotated Jource Listing A

: HostiledppletPathinalysis
: CiyDocuments and Settings\Tom McCabe\Desktop'Fuzz\Hosti!
Lancuuage:

cw_Jawva_inst
Module
Name viG) ew(G) iwiG

DoMylWork. runf() B 1

T1 public woid run() |

474 Let the applet tell its lie
T3 T4* TS repaint(]:

/¢ Let the applet sleep for a while to a

try {sleeper.sleep(delay);}
catch(InterruptedException e) [}

if {controller == null) {

Calculator calc = new Calculator()
e e

>

Armotated Source Listing -

HostiledppletPathdnalysis

: CiyDocuments and Settings'Tow McCabe'DesktopFuzzhHosti!

cw_Jawa_inst
Hodule
Name ViG] ewiG) iw(G!

Tngrateful. ol 4 1

CHO CHL public woid run() {

#¢ Let the applet tell its lie

repainti():

/4 Let the applet sleep for a while to as

CHY9 CHLO* CHL1 CH1Z CHL= CE

1 CH14 CH1& CH13

try {sleeper.sleep(delay):
CH16 CHLY catch(InterruptedException e) {}

if (controller == rmll) {

Hies CH27T

ErrorMessage err = new ErrorMessac™

11

McCabe Software, Inc.

(800) 638-6316 e URL- http://www.mccabe.com

e 41 Sharpe Drive e Cranston, RI 02920

Complexity Analysis of Hostile Applets

+===================z==1
| Compare Paths Report |
4+===+
4==ss=s==sss==af
IFILE: C:%\Documents and Settings\Tom	FILE: C:%Documents and Settings\Tom
HMcCabe\DesktopyFuzzhHostiled~	HMcCabe\DesktopyFuzzyHostiled~
ppletsiUngrateful. java	pplets\DoMyllork. java
MODULE : Mngrateful . run ()	MODULE : DoMyWork . runi)

T0: jawa,awt.Component, repainti) §5: java,.awt,Component.repainti)

73: jawa.lang.Thread.zsleep(long) §6: jawa.lang.Thread.zleep(long)

G8: #EXCEFTION_THROWH# ==> UNHAN-
DLED_EXCEPTION

DLED EXCEPTION

§2: <return- 97: <return>

|
|
|
|
| 73: #EXCEFTION_THROWH# ==> UNHAN-
|
|
|
|

|* MATCH *

70: jawa.awt.Component. repainti) §5: jawva.awt.Component.repainti)

73: jawva.lang.Thread.sleeplong) §8: jawva.lang.Thread.sleep(long)

73: #EXCEFTION_THROWH# ==> java.-

|

|

|

|

| 88: #E-CEPTION_THROWN# ==> java.~
| lang. InterruptedException
|

|

|

|

|

lang. InterruptedException
76: controller == null ==> FALSE 91: controller == null ==> FALSE
821 <return- 97: <return>

|# MATCH *

70: jawa,.awt.Component. repaint() 85: jawa.awt,Component. repainti)

73: jawa.lang. Thread, zleep (long) 88: jawa.lang. Thread. zleep (lohg)
88: #EXCEPTION THROWHE ==> NONE
76: controller == null ==> FALSE 91: controller == null ==> FALSE

82: <return> 97: <refturn>

|
|
|
|
| 73: $EXCEPTION THREOWN$ ==> HNONE
|
|
|
|
|

|+ MATCH *
70: java.awt.Component. repainti) §5: java.awt.Component.repainti)
73: jawa.lang. Thread. sleep(long) 88: jawa.lang.Thread. sleep(lohg)

73: $EXCEFTION_THROWH# ==> java.-
lang. InterruptedException

§8: $EXCEPTION_THROWN# ==> java.~
lang. InterruptedException

76: controller == null ==> TRUE 9l: controller == null ==+ TRUE

9Z: Calculator

|
|
|
|
|
|
|
|
|
| 77: ErrorMessage
|

|

#*% MISMATCH *++*

| HNumber of basis paths: 4
| Mumber of matches: 3
| Nuwher of mismatches: 1
| Juantitative lewel of commonality: 0.75
| Qualitative lewel of commonality: HIGH

McCabe Software, Inc.
(800) 638-6316 e URL- http://www.mccabe.com e 41 Sharpe Drive e Cranston, Rl 02920

Complexity Analysis of Hostile Applets

Examples of Hostile Java Applet Algorithm Path Signatures

Following are flowgraphs depicting the path signatures for a number of hostile Java applets.

Bl Graph{Listing for ‘GetFactor.GetFactor()’

[Zoomin][ZoomOuwt | [Prnt. J[Saveds. [SaveTest. |[Class |[Help. |Graphl45)% < A
M agnification Level: 2

<{ | % Page 1 of 4 GetFactor GetFactor()

Program: HostilefppletPathfinalysik0/26/09 Arnotated dource Listing &
GetFactor GetFactor() (J) Superimposed

Eyt:lmnat:i.c Graph
yclomatic 7
Ezgential 4
Dezign 1

=i

Progran : HostiledppletPathdnalysis N
Plain Edges File 1 CiyDocuments and Settings'Tom McCabe\Desktop' Fuzz\Hosti!
Lanquage: cw_Java inst

Maodule Maodule

Letter Hame viF) ew(G) iviG,
J GetFactor. GetFactor ()) 4

L4 Jo J1 GetFactor() !

=3 55 Jz 33 34 15% 18

- long naxfactor = (long) jawa. lang,
1) J7 factoe =433L:
57 J8 hopeful = 0L;
58 J9 success = false;
59
&0 J1in hopeful = wylumber % 2
6l J1L 312 if (hopeful == 0) {
62 J13 success = true;
53 J1l4 factoE =2
64 J15 i
65 Jla J17 elze |
(1] J15 success = false: b
<3| | >

B Graph/Listing for “TripleThreat. run{)’

I Zoom |n][Zoom Dut] [Frint...][Save bs..][Sawve Text...][Cloze][Help...]Graph[45]°/o:

£ b
M agnification Leyel: 2
< | % Page 1 of 4 TrpleThreat.mwn()
Program: HostilefppletPathfinalysi&0f26/09 Annotated Source Listing e
TripleThx_'eat,_rm() (CR) Superimpozed __
C&%mﬁig Eraph }J’E;'grg,j%g‘ﬁ - Progran : HostiledppletPathinalysis E
gss?ntigl 4 Plain Edges File 1 CiyDocuments and SettingsyTom McCabe'\DesktophFuzz\Hostil

esign

Langquage: cw_Java inst
Module Hodule

Letter Name viF) ew(G) iwi(G)
_R Ci TripleThreat.run() 5] 4
gl Cal Cal public woid run() {
gz
83 // Let the applet tell its lie
54 Caz CA3 Cid* Cas
repainti):
g5
aa f4 Let the applet appear honest by hawing
57 CAg CA7 CAS CAS CAlO* CALl CAl:Z CAl3 CAl4d CAals CAl9
gg try {Thread.sleepidelay);}
E g8 Calt Ciale Cal7 catch [(InterruptedException) {1}
g9
a0 /¢ Htart the senseless noise
o1 CAZ0 CAZ] CAZZ¥® CAZ3
annoy. loop () ; bl
8w >

13

McCabe Software, Inc.
(800) 638-6316 e URL- http://www.mccabe.com e 41 Sharpe Drive e Cranston, Rl 02920

Complexity Analysis of Hostile Applets

B Graphi/Listing for ‘Consume. run()’

[Zoomin][ZoomOw | [Pint.. J[Saveds. [SaveTemt. |[Ciose |[Help.. |Grah(45)% < >
M agnification Level: 2
rs | % Page 1 of 4 Consume.run(]
Program: Host;lenppletpathnnalysﬂwzsms Annotated Source Listing)
Consume _runi) (N Superimposed
Cﬁimﬁ:g E'raph 9 Eﬂ;rg,‘f%gm T Program : HostiledppletPathlnalysis W
Esst_entigl 4 L Plain Edges File : C:vDocuments and Settingsi\Tom McCabel\Desktop'Fuzz'\Hosti!
g = Langmage: cw_Java inst
- Module Module
Zg Letter Name viG) evwiG] iviG
:12 N Consume. rumn() [4
74 HNO H1 public woid runi) |
g0 HNZ N3 N4 NS5 Ne* N7 NS N N10O N14 N1S
try {Thread.zleep(delay);}
81 N1l N12 HN13 catch (InterruptedException e) {1}
Gz 16 N17 while (n == 0} {
%; 83 H1& N19 N20 N2l N22* N23 N24 Na25 N2e N30 N3l
:29 try { holdBigMumbers.append{0x7£E£1
- 54 N27 N28 N29 catch (JutlOfMemoryError o) {1
55 N3Z N33 N34* N35
repaint()
g6 Hie N37 -
a7 W38 N39 N40 B
& 04l }
M
& 2

Bl Graph/Listing for ‘No

[Zoomin][ZoomOut | [Pint. J[Saveds. |[SaveTest. |[Clse |[Help.. |Graph[45F: < Ed
Magnification Level: 2
< | % Page 1 of 4 MoisyBear un()
Program:][ostlle]\ppletl"ath.'ﬂnalys1!:0f26ﬂ]9 Annotated Source Listing Ea
NoizyBear run() (BG Superimposed __
E“’{xﬁ;g E“P“ o E‘;’g‘%&%g‘“ Program : HostiledppletPathdnalysis -
%:zgntlgl 3 Z% Plain Edges __ File 1 CiyDocuments and Settings)\Tom McCabe\Desktop'Fuzz'\Hostil
E _g T Language: cw_Jawa inat
:2* HModule Module
= _; Letter Name viG) ev(F) iv(G)
= g EG NoisyBear.run() 5 3
rC %* 50 EGD EGL public woid () |
T .5.. 51 BGZ2 BG3 BG4 BGS* BGE BGT
:tg* if {ammoy != nuall) amnoy. loop():
Zh 52 BGE BGS while [(truae) {
| ¥ % 53 BEG10 BGll BGLZ BGL3 BEGl4* BGLS
2l rightMow = new Datel):
| K 2 54 EGle BEGL7T BGlS* EGLY
:%3 repaint();
_%3 T3z 55 BGZ0 BGZ1 BGFZZ BGZ3 BGZ4* BFZL BG:=Z6 BGZT BGZIS BGSZ BGI3
31 ~ try { Thread.sleep(l0O00); }
34 1 BGZ9 EG30 BG31 catch [(InterruptedException e) {}
L3z 57 BG34 BG35 BG36 '
g2 58 BG37T 3
v
=] >
14

McCabe Software, Inc.
(800) 638-6316 @ URL- http://www.mccabe.com @ 41 Sharpe Drive e Cranston, Rl 02920

Complexity Analysis of Hostile Applets

B Graph/Listing for "Wasteful. fibonacci{long)'

[Zoomin][ZoomOut | [Pint. J[Saveds. |[SaveTest. |[Clse |[Help.. |Graph (455 < Ed
Magnification Level: 2
< | » Page 1 of 4 "Wasteful fibonaccillong)
Program: MostilefppletPathAnalysi0/26/0% AnotateduatuEe eplasting
Wast,eful:t:i.bonaccitlong) (CQ) Superimposed __
C&{ﬂﬁig ';1“1"‘ Hj;rg,cﬂg‘“ L Program : HostiledppletPathdnalysis
Ess?ntlgl 3 o Plain Edges File C:vDocuments and Settings\Tom McoCabe'\Desktop)Fuzz\Hostil
SERT Language: cw_Jawa inat
T HModule Module
| £ Letter HName TG ev(B iv(G
sogweryy. - EEERGS R TR les e s s s e s s e S B R S
% ci Wasteful.fibonacci (long) 3 3
= public long fibonacci(long
28 12 CQo cal ublic 1 fibh il k
_ & 13 CcQz Cos it (k == Ik ==1)
§i 74 cQ4 Cas return k;
T 75 coe else
110 78 CQ7 CO& CO%% COLO Q11 CQlZ CQl3+ COld CQl5 COlé
11 returh fibonacci(k - 1) + £ibe
12 77 £a17 1
13+
114
115
Pa k)
%1/

|

B Graph/Listing for ‘PublicEnemy.main(java.lang.String[])"

[Zoom |n][Zoom Out] [Print...][Save Az][Sawve Text..][Close][Help...]Glaph[45]°/=:

<]
M agnification Level: 2
£ | » Page 1 of 4 PublicE nemy.main(java.lang. Stringl])
Program: HostilefppletPathAinalysik0/26/09 Arnotated Jource Listing)

PublicEnemy.m. . .lang. String[]) (BRperimposed
Cﬁ%mﬁ:g E‘,;api‘u .l-* Hgﬁ;'grﬁ,ﬂg‘ﬁ S Program : HostiledppletPathinalysis
%z;intiﬂ g - “: Plain Edges File : CizDocuwents and Settings)Tom McCabe\Desktop',Fuzz\Hosti!
L * Language: cw_Java inst
Module Madule
Letter Name

v(G) ev(G) iv(G;

118 11 Hao BE PublicEnemy.mainijava. lang. 3tring[]) 20]
§ 33 EE0 EEL public =tatic woid main (String[] aroge
3 34 /4 Btart at the current directory or one ¢
¥ 35 EEZ EK3 EE4 EES5* BEG
E Atring homedir = System.getPropert
¥ 368 EE7 EES EES9 EEL0O EBE1l
; if{argv. length == 1) {homedir = a
37 EEl:zZ EK13 BKl4 EELS EEl&* EEL7
; File present = new File(homedir):
-~ 35 EElE int ind;
L 39 BE19 String[] dirlist;
' - 40 f¢ List the contents of the given directo
.H s 41 BEZ0 BEZ1l BEZ2Z BEZ3* BEZ4 BEZS
- for (dirlist = present.list(), inc
4z BEZ6 BEZ7 BE28 BE339 BE340 BE341 BE342 et
&) | X
15

McCabe Software, Inc.
(800) 638-6316 @ URL- http://www.mccabe.com @ 41 Sharpe Drive e Cranston, Rl 02920

Complexity Analysis of Hostile Applets

M Global Data Graphs for "HostileAppletPathAnalysis’

[Zoam In][Zoorn Out] [Print...][Save As..][Save Text.][Cloge][Help...]Graph (48] < | o
Magnification Lewvel: 2
r | % | Page 46 of 83 LoginServerSocket.main(java.lang. String[]]
~
7%,
il 1 i
Eils
gt = - =
N B4l Bal
1§ _ \ BAZ
t BA4Z
B 98 I Bid
TnIy*
Eiia~ BAS BAf EAT EBAS BAS Balo
Eill Eilz
7 B4l Eald
y /" BAlS
— Bila
™
) k4

M Global Data Graphs for "HostileAppletPathAnalysis’

JI

[Zoom In

Zoom Out]

[Print... Save Text...

J

Save bs...][

J[Close | Help.. |Graph[45)%: < | >

Magnification Lewvel:
< |

2
> Page BE of 83 PublicE nermy. main(java.lang. Sting(]]

=t

>

BED EBEL

BEZ BES BE4* BEES EE6

BE7* EK& EKS* EF10 BEE1l

BE1z EEL3 BEl4 EBE1S EEl6 EELY

BE1S
BE1S

353’*‘ BEZ0 EKZl BE:ZZ BEZ23 EK24 BEZS
- BEZzZ6 BEZ7 BEZS BK339 EK340 BE341 BE34:2 b
<1/ >
16
McCabe Software, Inc.
(800) 638-6316 @ URL- http://www.mccabe.com @ 41 Sharpe Drive e Cranston, Rl 02920

Complexity Analysis of Hostile Applets

M Global Data Graphs for "HostileAppletPathAnalysis’

[Zoom In][Zoom Out] [Frint...][Save fs...][Save Text..][Cloze][Help...]Graph [48)%: < | >
Magnification Lewvel: 2
<4 | % | Page B0 of 83 ScapeGoat.initf)
~
7 —
_16* e
30 BOO BOl
e E0Z* E03 E04 BOS
EBOs EBO7 EOS EBOS
33
E jnl' A BO10 E011 BOLZ BOLS EOL4
EO15
EOlg*
e |
IR 2 BO17 EOLS* BOLS BOZ0 BOZL* EBOZZ BOZ3 BOZ4
B ‘I:-{/
-
E025 E0Z6 BOZT7 BOZE EBO2S ¥
<0/ | ¥

M Global Data Graphs for "HostileAppletPathAnalysis’

[Zoom In][Zoom Out] [Print...][Save bz][Save Text..][Cloze][Help...]Graph[45]°/°:
Magnification Lewvel: 2

< | > Page B9 of 83 TripleThreat.runl)

|
S

>

£§%
P
— T
CAD Chl
29+
32+
CAZ CAZ CA4 CAS
38+
437
3 5
CAS CA7 CAG*® CAS® CALO CALL CALZ CAL3 CAl4 CALG CALS
=S “ CALlS CAlG CAL7

CAZ0 CAZ1* CAZZ CAZS

|~
|
| €

17

McCabe Software, Inc.
(800) 638-6316 @ URL- http://www.mccabe.com @ 41 Sharpe Drive e Cranston, Rl 02920

Complexity Analysis of Hostile Applets

B Graph{Listing for ‘Login.communicate(java. lang.String,java.lang.String)’

[Zoomln][ZoomOut | [Pt |[Saveds. |[SaveTest. |[Close |[Help.. |Graph[48)% < >
b agnification Lewel: 2

£ | % | Page 1 of 4 Login.communicate(java.... Sting.java.lang.String)

Program: HostileRppletPathfinalysis0/26/09 Annotated Source Listing &

Login.communi . . _a_lang. String) (RASgperimposed __
Eyclmnatic Graph Tpvard Flows
o

Jomatic 10 Loop Exits ___ Frogranm : HostiledppletPathdnalysis N
Esst_antiﬁl 1 Plain Edges File : C:vDocuments and Settings)Ton Melabe\Desktoph Fuzz\Hosti!
egign

Language: cow_Java inat
Module Module
Letter Name wiG) ew(G) iwviG)

47 Login. comminicate {jawa. lang. 3tring, java. 1 140 I
anef. String)

31 4Z0 AZ1 public woid communicate (Atring user,
3z AIZ AXY Socket sock = rnuall:;
33 et Inputdtrean inStream;
34 AZd AZS ucputitrean outitream = null;
;ig* 35 AF6 AZT byte b[] = new bhyte[l28]:
ey 36 AZS int mwbytes;
37 AZ9 String reply;
38 AZ10 AZ11 AZ12 AZ13 AZ14*% AZLS
StringBuffer sb = new StringBuffe:
ﬂ}“r 39 AZ16 AZLT Inetdddress inaddress = null:
=z H 40
=11§111 118 41 Iy System. out.println(”I'm up to no
42 4218 AZ19 AZ33 AZ43 AZ44 M
£ | >

B GraphiListing for ‘Report.communicate(java.lang.String,java.lang String)’

[Zoomin [ZoomOut | [Frirt.. || Saweds.][SaveTest. || Close || Help.. |Graph[45)% & | 3
d agnification Lesvel: 2
£ | % | Page 1 of 4 Report.communicate(java... String,.java.lang String)
Program: HostilefppletPathinalysik0f26/09 Annotated Source Listing F
Report.commun. . .a_lang. String) (Blperimposed __
Cﬁimﬁ:g LE3ph Loop ko —-= Prograw : HostilehdppletPathinalysis -
E:zglﬂsiﬁl 1 Plain Edges File : C:vDocuments and Settings'Ton McCabe'Desktop' Fuzz'Hosti!
L Language: cw_Jdava inat
Module Module
Letter Name v ew(G) iv(G)
Ealﬁai EM Report.communicate {java. lang. String, java. 10 1l
_=§!* lang. 3tring)
E 34 BMO EM1 public void communicate (Atring testst
35 EMZ EM3 Socket socker = rmll;
36 EM4 EMS Outputitresam outerStream = nuall:
ggi* 37 BEME EM7 byte by[] = new byrte[d4095];
o 38 EME int mumberbytes:
39 ENS EILO Inetidddress inneraddress = null;
- 40 EM11 EM1:Z String response = null:
= 41 EM13 EM14 EM1S5S EMle EM17* EBMLE
: StringBuffer responsebuf = new 3t
3= 12123 42 i Syatem. out.println("I'm up to no ¢
iiﬁiﬁ a3 EM13 BMZ0 BM34 BMA4 BMAS
=Ifi129 130
= — try §
44 EMz1 EM:Zz BMz3 BMz4 EMZL5* BMzE ™
%)) t
18

McCabe Software, Inc.
(800) 638-6316 @ URL- http://www.mccabe.com @ 41 Sharpe Drive e Cranston, Rl 02920

Complexity Analysis of Hostile Applets

" Java Insecurity, Mark D. LaDue, 1996

" plain English: Risks of Java Applets And Microsoft ActiveX Controls, Jennifer M. Marek
GIAC Security Essentials Certification (VER 1.3), 4 March 2002, SANS Institute

iii “Comparing Design and Code Metrics for Software Quality Prediction” Yue Jiang, Bojan Cukic, Tim Menzies,
Nick Bartlow, The Lane Department of Computer Science and Electrical Engineering, WVU

iv "Authorship Analysis: Identifying The Author of a Program™ Ivan Krsul Eugene H. Spafford, The COAST
Project - Department of Computer Sciences, Purdue University

v ldentifying Source Code Authorship, Robert Lange, Jonathan Max-Sohmer, Maxim Shevertalov, Jay Kothari,
Spiros Mancoridis, Software Engineering Research Group, Department of Computer Science

vi "SOURCE CODE AUTHORSHIP ANALYSIS FOR SUPPORTING THE CYBERCRIME INVESTIGATION
PROCESS" Georgia Frantzeskou, Stefanos Gritzalis Laboratory of Information and Communication Systems
Security, Aegean University, Stephen G. MacDonell, School of Computer and Information Sciences Auckland
University of Technology

vii “ The Little Hybrid Web Worm that Could” Billy Hoffman, SPI Dynamics, John Terrill Co-founder Enterprise
Management Technology

viii “Measuring the Effect of Code Complexity on Static Analysis Results” James Walden, Adam Messer and Alex
Kuhl, Department of Computer Science Northern Kentucky University

ix “Realistic and Affordable Cyberware Opponents for the Information Warfare BattleSpace”
Martin R. Stytz, Ph.D., Sheila B. Banks, Ph.D., Michael J. Young, Ph.D., Air Force Research Laboratory
Wright-Patterson AFB, OH 45431

X “Pattern Matching Security Properties of Code using Dependence Graphs” John Wilander and Pia Fak, Dept. of
Computer and Information Science, Linkopings Universitet

19

McCabe Software, Inc.
(800) 638-6316 e URL- http://www.mccabe.com e 41 Sharpe Drive e Cranston, Rl 02920

